A METHOD FOR THE ENGINEERING CALCULATION
OF THE TEMPERATURE FIELDS OF SOLIDS UNDER
CONDITIONS OF NATURAL HEAT EXCHANGE WITH
THE ATMOSPHERE
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A method is developed for the engineering calculation of the temperature field of a solid [1]
when its surface is subject to heat transfer by radiation, convection, and evaporation or
condensation simultaneously. Solutions are given for an exponential initial temperature
distribution and a two-layer system.

Under natural conditions heat transfer generally takes place on the surface of a solid by several
mechanisms acting simultaneously (for example, convection, radiation, evaporation or condensation, etc.),
This consideration, coupled with the fact that the role of each heat-transfer mechanism varies continuously
with time by arbitrary laws, presents certain difficulties in calculating the temperature state of solids.

‘We now consider a method for the engineering calculation of the temperature field in a solid whose
surface is subject to heat transfer by several mechanisms acting in concert, and for our initial data we
specify the temperature ~time dependence for air, solar radiation, and other parameters typical of the
thermal regime on the surface of the given solid,

The heat flux across the surface of the solid can be expressed by means of the thermal balance equa-

tion:

—A ‘_3_7;(69)(’__1):_ ¢, (0 —q,(D)—q,7)—q,(). "

Then, using the equations of heat- and mass-transfer theory, we can represent the quantities gg (),
dp (1)5 Qe (1), and g, (1) each as an algebraic sum consisting of a linear function of the surface temperature
and a time function given in the form of a power-law polynomial:

g (1) = BT (0, -+ uldr, o

===()

where kj and u p are coefficients.

For instance, the convective heat flux may be determined from the relation

Fe@®=a@[TO, )—T (). (3)

In accordance with the condition set forth above we must approximate the function T, (1) on the in-
vestigated time interval by a power polynomial and average ¢ (1), then use this average value in the cal-
culations,

As another example, we determine the radiative heat transfer in the familiar way on the basis of the
Stefan—Boltzmann law:
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Fig. 1. Graphs of the functions ¥, (W, Y) for v = 0 (a), 1)
(b), 2 (c), and 3 (d). a:1) Y=0; 2) 0.1; 3) 0.2; 4) 0.3; 5)
0.4;6) 0.5;7) 0.6); 8) 0.7; 9) 0.8; 10) 0,9; 11) 1,05 12) 1.5,
b:1)Y=0;2) 0.1; 3) 0.2;4) 0,3; 5) 0.4; 6) 0.5; 7) 0.6;

8) 0,7;9) 0.8; 10) 1,0; 11) 1,5. ¢c: 1) Y=10;2) 0.1; 3)
0.2;4) 0.3;5) 0.4;6) 0,5;7) 0.6; 8 0.7; 9) 0.8; 10) 1.0, d:
1)Y=0;2)0,1; 3) 0.2; 4) 0.3; 5) 0.4; 6) 0,5; 7) 0.6; 8) 0,8;
9) 1.0. .

gy (7) = 80,107 [T4(0, ) — T ,(¥)] . 4)

In radiative heat transfer under natural conditions the temperature T(0, 1) and Tbn a (1) vary between relatively

narrow limits., This fact permits us to approximate T4(0, 1) and T%m d(1-) accurately by linear functions and
to write expression (4) in the form

q.(0) = eon [T (0, D—T, _4(¥)] . (5)
It has been shown in [1] that for the temperature interval 268 to 308°K the indicated transformation
induces an error of at most 7%, where the coefficient n = 0,96,

Next, approximating the function Ty, (7) on the given time interval by a power polynomial, we can
easily reduce (5) to expression (2).

Thus, by reducing the variables qq (), dy(7), de(7), and gy (1) to expression (2) and then substituting
them into the thermal balance equation (1) and consolidating coefficients of like powers T, we can de-
termine the heat flux across the surface of the solid by the relation

Y aT (0, 7) _

s,V —NT (0, 7). (6)
ox

V=0
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Equation (7) corresponds to the special case in which the initial data are interpreted as parameters
whose values are constant over the analytic time interval. It is important to mention that expression (7)
has been derived in {2, 3].

We next examine several solutions of the heat-conduction equation under our boundary conditions (6)
for some of the most important practical situations,

1, Semiinfinite Body Having a Uniform

Initial Temperature

We denote the following:
0(x, )=T(x, ©)—To,

where

T » = const.

The solution of the heat-conduction equation

ox, v) 1 08(x, 1) 0 (8)

dx? a ot
subject to the boundary conditions
‘ae—f'_t E: 2,7 — HO (0, ),
X
v=0 (9)
0 (00, 1) =0,
in which
2, = SO—NTm , v_fl.(v:l, 2’ ,m)’H_:-————-,
A
and the zero-valued initial condition
0(x, 0)=0, (10)

which ensues from the condition of a uniform initial temperature distribution [T(x, 0) = const], was found
by an operational method and is written

8 (x, T) = HL 2z, Y, (W, V), (11)

V=0
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where

2v.
¥,= v {2(—2W)°i°erfcy_exp(W2+2WY)erfc(W+ Y)}, (12)

v
L4 =0

r— x
W=Hyar, V= —
v 2V ar
The functions ¥, depend on the two dimensionless parameters W and Y. The values of these functions were
calculated to facilitate their practical utilization. They are given in Fig. 1.

2. Semiinfinite Body Having an Exponential Initial

Temperature Distribution

The solution of Eq. (8) subject to the boundary conditions (9) and the initial condition
0(x, 0) =0 exp(— Ax), (13)
in which
8,=T(0, 0)— Ty,

was found by an operational method and is written

B(x, 7)= —[1{ E 2, ¥ (W, Y) 4 6, exp(—1?

V=0 . . .
1 S+ W, |4 :
<[5 S Pl 5 Pl — g Pl . (14

P{u} = expuPericu,

t=8S+Y, uy=8—Y, u;=W+Y, S=AVar

The values of the function P{u} are given in [4].

Examining the solution (14), we notice that it consists of two parts; the first part [the first term,
which is written as (11)] is determined by the boundary conditions on the surface, and the second part
accounts for the influence of the initial distribution,

The role of the second part can be assumed by comparing (11) with (14) for x = 0:

200,79 _ S gpseercS—
0,  S_w S—w

exp W2erfc W. {15)

The quantity A§(0, 7)/6, represents, in dimensionless form, the difference that arises in the calculation
of the surface temperature of the body according to Eqs. (11) and (14). The behavior of this quantity as a
function of W and S is illustrated by the graphs of Fig. 2, which were obtained from (15). It is apparent
from Fig,. 2 that for S>1 and W > 1 we have

A8(0, 1)

(]

< 0.15.

Consequently, the influence of the nonuniformity of the initial distribution may be neglected in this case for
the solution of practical problems, and the calculation can be carried out on the basis of (11).

3. Semiinfinite Body Having a Uniform Initial

Temperature and on Its Surface a Plane Layer with

Different Thermal Characteristics

This problem is formulated mathematically as follows. Solve the heat-conduction equations

PO (6, D) 1 99(x 1)
- Dx? S oa v

=0, —L<xL0, (16)
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0, (x, 1) 1 692(x,. T) —0, x>9 a7
ox? a, v
subject to the initial condition
8,(x, 0)=6,(x, 0)=10 (18)
and the boundary conditions
___694_%_;[2_2 = 2" —HO (— L, 1), (19)
v=0
a 0.7 _, 80 7 ’ (20)
T oo >
0,(0, 7) = 0,0, 1), (21
8, (o0, 7) = 0. (22)
The solutions of Eqgs. (16) and (17) were also found by an operational method; they are written
n
1 b—1
000 9= 2 : 2 {wv W, V)4 T VW, v, (23)
V=0
(24)

where

2b Em]
[N ¥ (W, Y. ,
Bz(x, T) H(b+ m [t \( 3)
V=0 :

N S
b= )/
L—x

L+x

Y, = Y, =, —LLx L0,
YU oVasr ' P 2Van R
)2
YVi=— ot ., x>0

2y ag

Comparing (11), (14), (23), and (24), we note at once that the solutions are expressed in terms of the
function ¥,(W, Y). Therefore, for engineering calculations it is permissible to use the universal graphs
of Fig. 1 in all three cases.

s

NOTATION

heat flux due to solar radiation;

resultant flux due to thermal radiation;

heat flux due to convection;

heat flux due to evaporation;

temperature of a body at distance x at time 7;
Stefan - Boltzmann constant;

emissivity;

mean surface temperature of bodies with which a given body realizes radiative heat exchange;
convective heat-transfer coefficient;

air temperature;

thermal conductivity;

thermal diffusivity.
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